🐍 Introduction to Python NumPy Library

🐍 Introduction to Python NumPy Library

āĻĒāĻžāχāĻĨāύ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽāĻŋāĻ‚ā§Ÿā§‡āϰ āϜāĻ—āϤ⧇ NumPy āĻšāϞ⧋ āĻāĻŽāύ āĻāĻ•āϟāĻŋ āϞāĻžāχāĻŦā§āϰ⧇āϰāĻŋ, āϝāĻž āĻĄā§‡āϟāĻž āϏāĻžāϝāĻŧ⧇āĻ¨ā§āϏ, āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚, āφāĻ°ā§āϟāĻŋāĻĢāĻŋāĻļāĻŋāϝāĻŧāĻžāϞ āχāĻ¨ā§āĻŸā§‡āϞāĻŋāĻœā§‡āĻ¨ā§āϏ āĻ•āĻŋāĻ‚āĻŦāĻž āϏāĻžāϝāĻŧ⧇āĻ¨ā§āϟāĻŋāĻĢāĻŋāĻ• āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āĻļāύ⧇āϰ āϜāĻ¨ā§āϝ āĻāϕ⧇āĻŦāĻžāϰ⧇ āĻ…āĻĒāϰāĻŋāĻšāĻžāĻ°ā§āϝāĨ¤ āϝāĻĻāĻŋ āĻĒāĻžāχāĻĨāύāϕ⧇ āφāĻŽāϰāĻž āĻĄā§‡āϟāĻž āĻ…ā§āϝāĻžāύāĻžāϞāĻžāχāϏāĻŋāϏ⧇āϰ āĻŽāĻ¸ā§āϤāĻŋāĻˇā§āĻ• āĻŦāϞāĻŋ, āϤāĻŦ⧇ NumPy āĻšāϞ⧋ āϏ⧇āχ āĻŽāĻ¸ā§āϤāĻŋāĻˇā§āϕ⧇āϰ āĻ—āĻŖāĻŋāϤāĻŦāĻŋāĻĻāĨ¤


đŸ”ĸ NumPy āϕ⧀?
âœ”ī¸ NumPy (Numerical Python) āĻšāϞ⧋ āĻāĻ•āϟāĻŋ āĻ“āĻĒ⧇āύ-āϏ⧋āĻ°ā§āϏ āĻĒāĻžāχāĻĨāύ āϞāĻžāχāĻŦā§āϰ⧇āϰāĻŋ, āϝāĻž āĻŽā§‚āϞāϤ arrays (āĻŦāĻšā§āĻŽāĻžāĻ¤ā§āϰāĻŋāĻ• āĻ…ā§āϝāĻžāϰ⧇) āĻāĻŦāĻ‚ numerical computation āĻāϰ āϜāĻ¨ā§āϝ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšā§ŸāĨ¤
âœ”ī¸ āĻāϟāĻŋ āĻĒā§āϰāĻĨāĻŽ āϤ⧈āϰāĻŋ āĻšā§Ÿ Travis Oliphant āĻāϰ āύ⧇āϤ⧃āĻ¤ā§āĻŦ⧇ ⧍ā§Ļā§Ļā§Ģ āϏāĻžāϞ⧇āĨ¤
âœ”ī¸ āĻāϰ āϞāĻ•ā§āĻˇā§āϝ āĻ›āĻŋāϞ āĻŦ⧜ āĻĒāϰāĻŋāĻŽāĻžāĻŖ numerical data āĻĻā§āϰ⧁āϤ āĻ“ āĻĻāĻ•ā§āώāĻ­āĻžāĻŦ⧇ āĻĒā§āϰāϏ⧇āϏ āĻ•āϰāĻžāĨ¤
âœ”ī¸ āĻŦāĻ°ā§āϤāĻŽāĻžāύ⧇ āĻāϟāĻŋ Python Data Science Ecosystem āĻāϰ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āĻšāĻŋāϏ⧇āĻŦ⧇ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšā§ŸāĨ¤

👉 āϏāĻšāϜ āĻ•āĻĨāĻžā§Ÿ: NumPy = Python + Fast Math Operations


🔹 āϕ⧇āύ NumPy āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻŦ⧇āύ?
NumPy āϏāĻžāϧāĻžāϰāĻŖ Python list-āĻāϰ āϤ⧁āϞāύāĻžā§Ÿ āĻ…āύ⧇āĻ• āĻŦ⧇āĻļāĻŋ āĻļāĻ•ā§āϤāĻŋāĻļāĻžāϞ⧀ āĻāĻŦāĻ‚ āĻĻā§āϰ⧁āϤāĨ¤
âœ”ī¸ Multi-dimensional array āύāĻŋā§Ÿā§‡ āĻ•āĻžāϜ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤
âœ”ī¸ Linear Algebra, Fourier Transform, Statistics āϏāĻšāĻœā§‡ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤
âœ”ī¸ āĻŦ⧜ matrix operation (ML, AI, Deep Learning) āϏāĻšāĻœā§‡ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤
âœ”ī¸ C/C++ Integration āĻĨāĻžāĻ•āĻžā§Ÿ āĻ…āύ⧇āĻ• āĻĻā§āϰ⧁āϤ āĻ•āĻžāϜ āĻ•āϰ⧇āĨ¤


🔹 NumPy āĻĻāĻŋā§Ÿā§‡ āφāĻŽāϰāĻž āϕ⧀ āϕ⧀ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŋ?

📊 Arrays āϤ⧈āϰāĻŋ āĻāĻŦāĻ‚ manipulate āĻ•āϰāĻž
📊 Mathematical operations (sum, mean, median, standard deviation)
📊 Linear Algebra operations (matrix multiplication, eigenvalues āχāĻ¤ā§āϝāĻžāĻĻāĻŋ)
📊 Random number generation (āĻĄā§‡āϟāĻž āϏāĻŋāĻŽā§āϞ⧇āĻļāύ)
📊 Broadcasting (āĻŦ⧜ āĻĄā§‡āϟāĻžāϰ āωāĻĒāϰ āϛ⧋āϟ āĻĄā§‡āϟāĻž apply āĻ•āϰāĻž)
📊 Data preprocessing in Machine Learning


🔹 NumPy āĻāϰ Important Methods

Method āĻ•āĻžāϜ
np.array() Array āϤ⧈āϰāĻŋ
np.zeros() āϏāĻŦ 0 āĻĻāĻŋā§Ÿā§‡ array āϤ⧈āϰāĻŋ
np.ones() āϏāĻŦ 1 āĻĻāĻŋā§Ÿā§‡ array āϤ⧈āϰāĻŋ
np.arange() Range āϏāĻš array āϤ⧈āϰāĻŋ
np.linspace() āϏāĻŽāĻžāύ āĻ­āĻžāϗ⧇ āĻŽāĻžāύ āϤ⧈āϰāĻŋ
np.reshape() Array āĻāϰ āĻļ⧇āĻĒ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ
np.mean() āĻ—ā§œ āĻŽāĻžāύ
np.median() Median āĻŦ⧇āϰ āĻ•āϰāĻž
np.std() Standard deviation
np.dot() Matrix multiplication
np.random.rand() Random āϏāĻ‚āĻ–ā§āϝāĻž āϤ⧈āϰāĻŋ
np.max(), np.min() āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āĻ“ āϏāĻ°ā§āĻŦāύāĻŋāĻŽā§āύ āĻŽāĻžāύ


🔹 NumPy Practical Examples

āύāĻŋāĻšā§‡āϰ āϕ⧋āĻĄāϗ⧁āϞ⧋āϤ⧇ āĻĄā§‡āĻĢāĻŋāύ⧇āĻļāύ āϏāĻš āĻ•āĻŽā§‡āĻ¨ā§āϟ āĻĻ⧇āĻ“ā§ŸāĻž āφāϛ⧇ āϝ⧇āύ āύāϤ⧁āύāϰāĻž āϏāĻšāĻœā§‡ āĻŦ⧁āĻāϤ⧇ āĻĒāĻžāϰ⧇:

import numpy as np

✅ 1. Create a simple array

arr = np.array([1, 2, 3, 4, 5])
print(“Array:”, arr)

✅ 2. Create 2D array (Matrix)

matrix = np.array([[1, 2], [3, 4]])
print(“Matrix:\n”, matrix)

✅ 3. Create array of zeros

zeros = np.zeros((3, 3))
print(“Zeros:\n”, zeros)

✅ 4. Create array of ones

ones = np.ones((2, 4))
print(“Ones:\n”, ones)

✅ 5. Create array using range

range_array = np.arange(0, 10, 2) # 0 āĻĨ⧇āϕ⧇ 10 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ, āĻĒā§āϰāϤāĻŋ 2 āϧāĻžāĻĒ⧇
print(“Range Array:”, range_array)

✅ 6. Reshape an array

reshaped = np.arange(12).reshape(3, 4)
print(“Reshaped Array:\n”, reshaped)

✅ 7. Basic Statistics

data = np.array([10, 20, 30, 40, 50])
print(“Mean:”, np.mean(data))
print(“Median:”, np.median(data))
print(“Standard Deviation:”, np.std(data))

✅ 8. Matrix Multiplication

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print(“Matrix Multiplication:\n”, np.dot(A, B))

✅ 9. Random Numbers

random_arr = np.random.rand(3, 3)
print(“Random Array:\n”, random_arr)


🔹 NumPy āϕ⧋āĻĨāĻžā§Ÿ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšā§Ÿ? (Major Projects)

✅ Machine Learning (TensorFlow, Scikit-Learn āĻāϰ āĻ­āĻŋāϤāϰ⧇ NumPy heavily used āĻšā§Ÿ)
✅ Data Analysis (Pandas-āĻāϰ backend āĻ NumPy āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻšā§Ÿ)
✅ Deep Learning (Keras, PyTorch āĻāϰ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āĻšāĻŋāϏāĻžāĻŦ)
✅ Scientific Computing (Physics, Biology data simulation)
✅ Image Processing (OpenCV + NumPy āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻšā§Ÿ)
✅ Financial Modeling (āĻ¸ā§āϟāĻ• āĻŽāĻžāĻ°ā§āϕ⧇āϟ āĻĄā§‡āϟāĻž āĻ…ā§āϝāĻžāύāĻžāϞāĻžāχāϏāĻŋāϏ)


🔹 NumPy āĻāϰ āϗ⧁āϰ⧁āĻ¤ā§āĻŦ

Python āĻāϰ Data Science Ecosystem (Pandas, SciPy, Matplotlib, Scikit-Learn) āϏāĻŦāĻ•āĻŋāϛ⧁āχ NumPy āĻāϰ āωāĻĒāϰ āύāĻŋāĻ°ā§āĻ­āϰāĻļā§€āϞāĨ¤

āĻŦ⧜ āĻĄā§‡āϟāĻž āĻĻā§āϰ⧁āϤ āĻšā§āϝāĻžāĻ¨ā§āĻĄā§‡āϞ āĻ•āϰāϤ⧇ NumPy āĻ…āĻĒāϰāĻŋāĻšāĻžāĻ°ā§āϝāĨ¤

āĻāϟāĻŋ Python āĻāϰ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• powerhouseāĨ¤


🏁 āωāĻĒāϏāĻ‚āĻšāĻžāϰ

āϝāĻĻāĻŋ āφāĻĒāύāĻŋ Data Science, Machine Learning, āĻŦāĻž AI āĻļāĻŋāĻ–āϤ⧇ āϚāĻžāύ, āϤāĻžāĻšāϞ⧇ NumPy āĻšāϞ⧋ āĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāĨ¤ āĻāϰ āωāĻĒāϰ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āĻ•āϰ⧇āχ āĻĒāϰāĻŦāĻ°ā§āϤ⧀āϤ⧇ Pandas, TensorFlow, PyTorch āĻāϰ āĻŽāϤ⧋ āϞāĻžāχāĻŦā§āϰ⧇āϰāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇āύāĨ¤

👉 āϤāĻžāχ, NumPy āĻļ⧇āĻ–āĻž āĻŽāĻžāύ⧇ āĻšāϞ⧋ āĻĄā§‡āϟāĻž āϏāĻžāϝāĻŧ⧇āĻ¨ā§āϏ⧇āϰ āĻĻāϰāϜāĻž āϖ⧁āϞ⧇ āĻĻ⧇āĻ“āϝāĻŧāĻžāĨ¤

Leave a Reply

Your email address will not be published. Required fields are marked *