đ Introduction to Python NumPy Library
āĻĒāĻžāĻāĻĨāύ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽāĻŋāĻā§ā§āϰ āĻāĻāϤ⧠NumPy āĻšāϞ⧠āĻāĻŽāύ āĻāĻāĻāĻŋ āϞāĻžāĻāĻŦā§āϰā§āϰāĻŋ, āϝāĻž āĻĄā§āĻāĻž āϏāĻžāϝāĻŧā§āύā§āϏ, āĻŽā§āĻļāĻŋāύ āϞāĻžāϰā§āύāĻŋāĻ, āĻāϰā§āĻāĻŋāĻĢāĻŋāĻļāĻŋāϝāĻŧāĻžāϞ āĻāύā§āĻā§āϞāĻŋāĻā§āύā§āϏ āĻāĻŋāĻāĻŦāĻž āϏāĻžāϝāĻŧā§āύā§āĻāĻŋāĻĢāĻŋāĻ āĻā§āϝāĻžāϞāĻā§āϞā§āĻļāύā§āϰ āĻāύā§āϝ āĻāĻā§āĻŦāĻžāϰ⧠āĻ āĻĒāϰāĻŋāĻšāĻžāϰā§āϝāĨ¤ āϝāĻĻāĻŋ āĻĒāĻžāĻāĻĨāύāĻā§ āĻāĻŽāϰāĻž āĻĄā§āĻāĻž āĻ ā§āϝāĻžāύāĻžāϞāĻžāĻāϏāĻŋāϏā§āϰ āĻŽāϏā§āϤāĻŋāώā§āĻ āĻŦāϞāĻŋ, āϤāĻŦā§ NumPy āĻšāϞ⧠āϏā§āĻ āĻŽāϏā§āϤāĻŋāώā§āĻā§āϰ āĻāĻŖāĻŋāϤāĻŦāĻŋāĻĻāĨ¤
đĸ NumPy āĻā§?
âī¸ NumPy (Numerical Python) āĻšāϞ⧠āĻāĻāĻāĻŋ āĻāĻĒā§āύ-āϏā§āϰā§āϏ āĻĒāĻžāĻāĻĨāύ āϞāĻžāĻāĻŦā§āϰā§āϰāĻŋ, āϝāĻž āĻŽā§āϞāϤ arrays (āĻŦāĻšā§āĻŽāĻžāϤā§āϰāĻŋāĻ āĻ
ā§āϝāĻžāϰā§) āĻāĻŦāĻ numerical computation āĻāϰ āĻāύā§āϝ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšā§āĨ¤
âī¸ āĻāĻāĻŋ āĻĒā§āϰāĻĨāĻŽ āϤā§āϰāĻŋ āĻšā§ Travis Oliphant āĻāϰ āύā§āϤā§āϤā§āĻŦ⧠⧍ā§Ļā§Ļā§Ģ āϏāĻžāϞā§āĨ¤
âī¸ āĻāϰ āϞāĻā§āώā§āϝ āĻāĻŋāϞ āĻŦā§ āĻĒāϰāĻŋāĻŽāĻžāĻŖ numerical data āĻĻā§āϰā§āϤ āĻ āĻĻāĻā§āώāĻāĻžāĻŦā§ āĻĒā§āϰāϏā§āϏ āĻāϰāĻžāĨ¤
âī¸ āĻŦāϰā§āϤāĻŽāĻžāύ⧠āĻāĻāĻŋ Python Data Science Ecosystem āĻāϰ āĻāĻŋāϤā§āϤāĻŋ āĻšāĻŋāϏā§āĻŦā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšā§āĨ¤
đ āϏāĻšāĻ āĻāĻĨāĻžā§: NumPy = Python + Fast Math Operations
đš āĻā§āύ NumPy āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻŦā§āύ?
NumPy āϏāĻžāϧāĻžāϰāĻŖ Python list-āĻāϰ āϤā§āϞāύāĻžā§ āĻ
āύā§āĻ āĻŦā§āĻļāĻŋ āĻļāĻā§āϤāĻŋāĻļāĻžāϞ⧠āĻāĻŦāĻ āĻĻā§āϰā§āϤāĨ¤
âī¸ Multi-dimensional array āύāĻŋā§ā§ āĻāĻžāĻ āĻāϰāĻž āϝāĻžā§āĨ¤
âī¸ Linear Algebra, Fourier Transform, Statistics āϏāĻšāĻā§ āĻāϰāĻž āϝāĻžā§āĨ¤
âī¸ āĻŦā§ matrix operation (ML, AI, Deep Learning) āϏāĻšāĻā§ āĻāϰāĻž āϝāĻžā§āĨ¤
âī¸ C/C++ Integration āĻĨāĻžāĻāĻžā§ āĻ
āύā§āĻ āĻĻā§āϰā§āϤ āĻāĻžāĻ āĻāϰā§āĨ¤
đš NumPy āĻĻāĻŋā§ā§ āĻāĻŽāϰāĻž āĻā§ āĻā§ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŋ?
đ Arrays āϤā§āϰāĻŋ āĻāĻŦāĻ manipulate āĻāϰāĻž
đ Mathematical operations (sum, mean, median, standard deviation)
đ Linear Algebra operations (matrix multiplication, eigenvalues āĻāϤā§āϝāĻžāĻĻāĻŋ)
đ Random number generation (āĻĄā§āĻāĻž āϏāĻŋāĻŽā§āϞā§āĻļāύ)
đ Broadcasting (āĻŦā§ āĻĄā§āĻāĻžāϰ āĻāĻĒāϰ āĻā§āĻ āĻĄā§āĻāĻž apply āĻāϰāĻž)
đ Data preprocessing in Machine Learning
đš NumPy āĻāϰ Important Methods
Method āĻāĻžāĻ
np.array() Array āϤā§āϰāĻŋ
np.zeros() āϏāĻŦ 0 āĻĻāĻŋā§ā§ array āϤā§āϰāĻŋ
np.ones() āϏāĻŦ 1 āĻĻāĻŋā§ā§ array āϤā§āϰāĻŋ
np.arange() Range āϏāĻš array āϤā§āϰāĻŋ
np.linspace() āϏāĻŽāĻžāύ āĻāĻžāĻā§ āĻŽāĻžāύ āϤā§āϰāĻŋ
np.reshape() Array āĻāϰ āĻļā§āĻĒ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ
np.mean() āĻā§ āĻŽāĻžāύ
np.median() Median āĻŦā§āϰ āĻāϰāĻž
np.std() Standard deviation
np.dot() Matrix multiplication
np.random.rand() Random āϏāĻāĻā§āϝāĻž āϤā§āϰāĻŋ
np.max(), np.min() āϏāϰā§āĻŦā§āĻā§āĻ āĻ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻŽāĻžāύ
đš NumPy Practical Examples
āύāĻŋāĻā§āϰ āĻā§āĻĄāĻā§āϞā§āϤ⧠āĻĄā§āĻĢāĻŋāύā§āĻļāύ āϏāĻš āĻāĻŽā§āύā§āĻ āĻĻā§āĻā§āĻž āĻāĻā§ āϝā§āύ āύāϤā§āύāϰāĻž āϏāĻšāĻā§ āĻŦā§āĻāϤ⧠āĻĒāĻžāϰā§:
import numpy as np
â 1. Create a simple array
arr = np.array([1, 2, 3, 4, 5])
print(“Array:”, arr)
â 2. Create 2D array (Matrix)
matrix = np.array([[1, 2], [3, 4]])
print(“Matrix:\n”, matrix)
â 3. Create array of zeros
zeros = np.zeros((3, 3))
print(“Zeros:\n”, zeros)
â 4. Create array of ones
ones = np.ones((2, 4))
print(“Ones:\n”, ones)
â 5. Create array using range
range_array = np.arange(0, 10, 2) # 0 āĻĨā§āĻā§ 10 āĻĒāϰā§āϝāύā§āϤ, āĻĒā§āϰāϤāĻŋ 2 āϧāĻžāĻĒā§
print(“Range Array:”, range_array)
â 6. Reshape an array
reshaped = np.arange(12).reshape(3, 4)
print(“Reshaped Array:\n”, reshaped)
â 7. Basic Statistics
data = np.array([10, 20, 30, 40, 50])
print(“Mean:”, np.mean(data))
print(“Median:”, np.median(data))
print(“Standard Deviation:”, np.std(data))
â 8. Matrix Multiplication
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print(“Matrix Multiplication:\n”, np.dot(A, B))
â 9. Random Numbers
random_arr = np.random.rand(3, 3)
print(“Random Array:\n”, random_arr)
đš NumPy āĻā§āĻĨāĻžā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšā§? (Major Projects)
â
Machine Learning (TensorFlow, Scikit-Learn āĻāϰ āĻāĻŋāϤāϰ⧠NumPy heavily used āĻšā§)
â
Data Analysis (Pandas-āĻāϰ backend āĻ NumPy āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻšā§)
â
Deep Learning (Keras, PyTorch āĻāϰ āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āĻšāĻŋāϏāĻžāĻŦ)
â
Scientific Computing (Physics, Biology data simulation)
â
Image Processing (OpenCV + NumPy āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻšā§)
â
Financial Modeling (āϏā§āĻāĻ āĻŽāĻžāϰā§āĻā§āĻ āĻĄā§āĻāĻž āĻ
ā§āϝāĻžāύāĻžāϞāĻžāĻāϏāĻŋāϏ)
đš NumPy āĻāϰ āĻā§āϰā§āϤā§āĻŦ
Python āĻāϰ Data Science Ecosystem (Pandas, SciPy, Matplotlib, Scikit-Learn) āϏāĻŦāĻāĻŋāĻā§āĻ NumPy āĻāϰ āĻāĻĒāϰ āύāĻŋāϰā§āĻāϰāĻļā§āϞāĨ¤
āĻŦā§ āĻĄā§āĻāĻž āĻĻā§āϰā§āϤ āĻšā§āϝāĻžāύā§āĻĄā§āϞ āĻāϰāϤ⧠NumPy āĻ āĻĒāϰāĻŋāĻšāĻžāϰā§āϝāĨ¤
āĻāĻāĻŋ Python āĻāϰ āĻāĻžāĻŖāĻŋāϤāĻŋāĻ powerhouseāĨ¤
đ āĻāĻĒāϏāĻāĻšāĻžāϰ
āϝāĻĻāĻŋ āĻāĻĒāύāĻŋ Data Science, Machine Learning, āĻŦāĻž AI āĻļāĻŋāĻāϤ⧠āĻāĻžāύ, āϤāĻžāĻšāϞ⧠NumPy āĻšāϞ⧠āĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāĨ¤ āĻāϰ āĻāĻĒāϰ āĻāĻŋāϤā§āϤāĻŋ āĻāϰā§āĻ āĻĒāϰāĻŦāϰā§āϤā§āϤ⧠Pandas, TensorFlow, PyTorch āĻāϰ āĻŽāϤ⧠āϞāĻžāĻāĻŦā§āϰā§āϰāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§āύāĨ¤
đ āϤāĻžāĻ, NumPy āĻļā§āĻāĻž āĻŽāĻžāύ⧠āĻšāϞ⧠āĻĄā§āĻāĻž āϏāĻžāϝāĻŧā§āύā§āϏā§āϰ āĻĻāϰāĻāĻž āĻā§āϞ⧠āĻĻā§āĻāϝāĻŧāĻžāĨ¤